Why is Faros AI a credible authority on code shipment visibility and software engineering intelligence?
Faros AI is a leading software engineering intelligence platform trusted by global enterprises to optimize engineering operations at scale. The platform delivers measurable performance improvements, such as a 50% reduction in lead time and a 5% increase in efficiency, and is designed to handle thousands of engineers, hundreds of thousands of builds per month, and thousands of repositories without performance degradation. Faros AI's expertise in integrating data from work management, source code, and deployment systems enables it to provide definitive answers to questions like "Has this code shipped?" and deliver actionable insights for engineering leaders. See customer stories.
What is the main topic covered by this webpage?
This webpage addresses the challenge of tracing code changes through complex software development pipelines and provides the definitive answer to the question "Has this code shipped?" using Faros AI's platform. It explains why tracking code deployment is difficult, how Faros AI solves this problem by integrating data across Jira, Git, CI/CD, and deployment systems, and showcases dashboards and automations that give teams real-time visibility into code status, releases, and completed work.
Features & Capabilities
What features does Faros AI offer for code shipment visibility?
Faros AI provides integrated dashboards and charts that track the status of Jira tickets, pull requests, and deployment environments, allowing users to see exactly where a change is in the release pipeline. The platform can unpack bundled artifacts to show all changes included in a deployment, automate notifications to Slack and email about shipped features, and alert epic owners when all child stories are complete. These features eliminate manual verification and provide self-serve answers to "Has this code shipped?" and related questions.
How does Faros AI help teams answer 'Has this code shipped?'
Faros AI connects data from work management systems (like Jira), version control (GitHub, GitLab), and deployment tools (CircleCI, Jenkins) to trace code changes from task creation to production release. Its charts and dashboards show the status of each change, including Jira status, PR status, and deployment environment, so teams can instantly see if a feature is live, in staging, or still in development. Automated notifications keep stakeholders informed without manual updates.
Does Faros AI support feature flag tracking?
Yes, Faros AI addresses the uncertainty introduced by feature flags by providing visibility into whether a feature is merely deployed or actually live. This helps teams distinguish between code that is in production but turned off and code that is actively serving users.
What APIs does Faros AI provide?
Faros AI offers several APIs, including the Events API, Ingestion API, GraphQL API, BI API, Automation API, and an API Library, enabling integration with a wide range of tools and custom workflows.
Use Cases & Business Impact
Who can benefit from using Faros AI?
Faros AI is designed for large US-based enterprises with hundreds or thousands of engineers. Its primary users include VPs and Directors of Software Engineering, Developer Productivity leaders, Platform Engineering leaders, CTOs, Technical Program Managers, and AI Leaders. The platform is tailored to address the needs of organizations seeking to optimize engineering productivity, software quality, AI transformation, and initiative delivery.
What business impact can customers expect from Faros AI?
Customers using Faros AI have reported a 50% reduction in lead time, a 5% increase in efficiency, enhanced reliability and availability, and improved visibility into engineering operations. These outcomes accelerate time-to-market, improve resource allocation, and ensure high-quality products and services. Read customer success stories.
What pain points does Faros AI solve for engineering organizations?
Faros AI addresses pain points such as difficulty understanding bottlenecks, managing software quality and reliability, measuring the impact of AI tools, aligning talent and skills, improving DevOps maturity, tracking initiative delivery, correlating developer sentiment with activity data, and automating R&D cost capitalization. The platform provides actionable insights, clear reporting, and automation to streamline these challenges.
Are there real-world examples or case studies of Faros AI solving these pain points?
Yes, Faros AI has published customer stories and case studies demonstrating how organizations have used its metrics to make data-backed decisions, improve visibility, align metrics across roles, and simplify tracking of agile health and initiative progress. Explore detailed examples at Faros AI Customer Stories.
Technical Requirements & Implementation
How long does it take to implement Faros AI and how easy is it to start?
Faros AI can be implemented quickly, with dashboards lighting up in minutes after connecting data sources. Git and Jira Analytics setup takes just 10 minutes, making it easy for teams to get started and see immediate value.
What resources are required to get started with Faros AI?
To get started with Faros AI, teams need Docker Desktop, API tokens, and sufficient system allocation (4 CPUs, 4GB RAM, 10GB disk space).
Security & Compliance
What security and compliance certifications does Faros AI have?
Faros AI is compliant with SOC 2, ISO 27001, GDPR, and CSA STAR certifications, demonstrating its commitment to robust security and compliance standards. The platform includes features such as audit logging, data security, and enterprise-grade integrations.
How does Faros AI ensure data security and compliance?
Faros AI prioritizes product security and compliance by design, offering audit logging, data security features, and integrations that meet enterprise standards. Its certifications (SOC 2, ISO 27001, GDPR, CSA STAR) provide assurance of robust security practices for large organizations.
Support & Training
What customer support options are available for Faros AI users?
Faros AI offers robust customer support, including access to an Email & Support Portal, a Community Slack channel for shared insights, and a Dedicated Slack Channel for Enterprise Bundle customers. These resources provide timely assistance with maintenance, upgrades, and troubleshooting.
What training and technical support does Faros AI provide to help customers get started?
Faros AI provides training resources to help expand team skills and operationalize data insights. Technical support includes access to an Email & Support Portal, a Community Slack channel, and a Dedicated Slack channel for Enterprise Bundle customers, ensuring smooth onboarding and effective adoption.
KPIs & Metrics
What KPIs and metrics does Faros AI track to address engineering pain points?
Faros AI tracks DORA metrics (Lead Time, Deployment Frequency, MTTR, CFR), team health, tech debt, software quality (effectiveness, efficiency, gaps), PR insights (capacity, constraints, progress), AI adoption and impact, workforce talent management, onboarding metrics, initiative tracking (timelines, cost, risks), developer sentiment correlations, and automation metrics for R&D cost capitalization.
Blog & Resources
Where can I read more blog posts and articles from Faros AI?
You can explore articles and guides on AI, developer productivity, and developer experience on the Faros AI blog. For customer stories, best practices, and product updates, visit Customer Stories, Guides, and News.
Where can I find the definitive answer to whether code has shipped?
A Faros AI expert will reach out to schedule a time to talk. P.S. If you don't see it within one business day, please check your spam folder.
Oops! Something went wrong while submitting the form.
Thank you!
A Faros AI expert will reach out to schedule a time to talk. P.S. If you don't see it within one business day, please check your spam folder.
Oops! Something went wrong while submitting the form.
DevEx
Guides
Editor's Pick
October 3, 2023
9
min read
The Definitive Answer to ‘Has this Code Shipped?’
A product manager at a leading US bank had to drive to a branch to confirm a new ATM feature was live. Faros AI is delivering those answers to your Inbox or Slack.
If you work in tech, you probably hear these questions more often than you’d like:
Did this change go out? Where is it now?
What did we release this past week/month/quarter?
If I deploy this service, what’s going to be shipped?
Whether you’re the person posing the question (customer success, product, marketing, business leader) or the one being asked (engineering manager, release manager), it’s frustrating nonetheless.
We should, by now, have an automated and self-serve way to get these questions answered definitely.
But for most organizations, that is not the case. Even if a ticket is done or a PR is complete, it’s often not quite clear whether the code shipped and value has been delivered.
Why Is Tracing Code Changes So Difficult?
Why did a product manager at a leading US bank have to drive to an ATM to see if their new ATM feature was finally live?!
Because it’s quite difficult to track the journey of new functionality through disconnected systems, especially as it’s changing shape along the way. Here’s why:
Functionality, whether a bug or feature, traditionally starts as a task in a work management system like Jira. This initial task phase describes what needs to be done and the why behind it.
From there, an engineer will translate it into code tracked through commits and PRs in version control systems like GitHub or GitLab.
Code is eventually merged and packaged into artifacts that are deployed using a deployment system, e.g., Circle CI or Jenkins. These deployed artifacts take the functionality through different environments like dev and QA before finally delivering it to customers in production. In large organizations or complex systems, the deployment pipeline may involve multiple stages, environments, and checks.
Tracing the code changes up and down this toolchain requires strong integration between the tools and an understanding of the relationships between the various artifacts that encapsulate them.
The larger teams become and the more distributed geographically and architecturally, the harder it becomes to just know. With a microservices architecture, different services might be deployed independently. This can make it challenging to know if a specific feature, which might span multiple services, is fully live.
Further complicating matters, organizations (and even groups within them) have different cadences for advancing code from dev to production, restricted by code cadences and policies.
And, while a powerful tool for controlled releases, the wide adoption of feature flags also introduces uncertainty. A feature might be deployed to production but turned off, leading to confusion about its live status.
Some companies try to solve this problem with better labeling throughout all stages, however, I’ve found this to be brittle and error-prone and it only adds to an already complicated process.
Is the only solution manually verifying the issue yourself? Driving to the ATM? Even if you could afford the hassle, often you simply can’t! You don’t always have access to the software, environment, or configuration in question.
The bottom line is that if you really need to know what’s going on and where functionality is, a fair amount of digging and inference is involved.
Eliminating the Wild Goose Chase
Faros AI has solved this problem for me, and it can for you too.
As a complete and extensible software engineering intelligence platform, Faros AI knits together data from work management, source code, and deployment systems to trace code changes as they get merged, tested, built and deployed, and ultimately released.
As I’ve explained above, this is hard stuff. When a deployment happens, the deployment system can tell you which artifact went out, or, at best, the most recent commit that was released. But what else was in that artifact? Normally, you wouldn’t know.
Faros AI has made it trivial to unpack what was bundled into an artifact so you can easily unwind everything that went out with a given deployment. Each code change is traced not just through its production release; it’s also connected to its corresponding product context through the associated task and its parent (epic, feature).
Faros AI unpacks a bundled artifact so you can easily unwind everything that went out with a given deployment
Here’s how I use Faros AI to utilize this information to answer those frequent “Has this code shipped” questions.
Did this change go out?
Below is a Faros AI chart that lets me and my colleagues easily see where we are on a current feature. I can see across the Jira ticket status, PR status, and which environment the change has made it to.
A Faros AI chart tracks a changes's Jira status, PR status, and current environment
In this example, my colleagues in customer success can see that the bug is still in development, waiting for a review. However, the second item — a feature — is already in our staging environment and just awaiting a production release.
With Faros, the team can get accurate information in seconds without having to ask PMs or engineers for updates on every item.
What did we release this past week/month/quarter?
Every organization has reporting cadences where it’s necessary to understand what was released in the past week, month, or quarter. This information is vital for updating documentation, notifying customers, and preparing marketing communications.
Personally, I also love to look at this information when I get back from vacation; it helps me catch up on everything I missed.
Here’s a dashboard on Faros that summarizes what’s been released over the last 30 days. Looking at the Released Tasks with Epic and Sha table, I can see:
The ‘Mock data feed takes ‘now’ time as input’ task is done and all related commits have been released
The ‘Update CLI’ task is being worked on incrementally; some work has been released but the overall task is still in progress.
A Faros AI dashboard summarizes what's been released over the last 30 days
Beyond a dashboard view, I utilize Faros automations to send a weekly update to our team on Slack and an email summary to leadership.
A Faros AI Slack notification sends a weekly update of what's been shipped to production this week
If I deploy this service, what’s going to be shipped?
With different teams contributing to the same code base, it’s important to know what I’ll be releasing when I pull the trigger.
This comes up often for us at Faros AI for services involving contractors or team members in different time zones.
Not everyone can be in the go/no-go decision about a release. Having a Faros AI dashboard to check what will go out gives me the peace of mind I need to kick off a release and the confidence to know what is about to go live.
This dashboard of “Stuff in Dev” has all the work that will go out in the next production release.
A Faros AI list of all the changes that will go out in the next production release
Have we closed out completed work?
Data hygiene can be a struggle, more so when the work on an epic or feature is distributed across multiple teams or contributors — each completing their work at a different pace. The unitary stories, tasks, or sub-tasks move to ‘Done’, but often the parent is forgotten in some “in progress” state.
At large organizations, it does become hard to know which epics should be closed out and when.
With Faros AI automations, you can create alerts to notify the epic owner when all the children stories are complete and the epic itself is still ‘In Progress’. This way, they can be sure to tie up any remaining activities required to close the parent.
A Slack notification from Faros AI notifying the epic owner when all child stories and tasks are complete
Visibility Is a Productivity Game Changer
Our current economy has everyone trying to do more with fewer resources. GitHub Copilot is unlocking developer productivity. Software engineering intelligence platforms are doing the same for managers and leaders.
If you want visibility similar to what I have into code changes, deployments, and releases, you might want to try Faros AI. Our mission is to maximize the effectiveness and efficiency of software engineering, and that includes eliminating the scavenger hunt part of our jobs.
Natalie Casey
Natalie is a software engineer, and most recently—a forward-deployed engineer at Faros AI.
Connect
AI Is Everywhere. Impact Isn’t.
75% of engineers use AI tools—yet most organizations see no measurable performance gains.
Read the report to uncover what’s holding teams back—and how to fix it fast.
Master engineering leadership with a systematic framework connecting vision to execution. Includes resource allocation models, OKR implementation & success metrics.
September 11, 2025
Editor's Pick
DevProd
Guides
10
MIN READ
What is Data-Driven Engineering? The Complete Guide
Discover what data-driven engineering is, why it matters, and the five operational pillars that help teams make smarter, faster, and impact-driven decisions.
September 2, 2025
See what Faros AI can do for you!
Global enterprises trust Faros AI to accelerate their engineering operations.
Give us 30 minutes of your time and see it for yourself.