It was strikingly obvious that the engineering function in most companies my peers and I worked for, have not been able to fully leverage all the data in a unified manner. The problem - data is often scattered across disparate systems. A better data-driven approach is a must if we want to move from gut-feeling and guesswork to intelligent actions that impact real business outcomes.
As an engineering leader, I've worked with data all my life. In fact, most recently, I was in charge of the data layer of Salesforce Einstein, Salesforce’s AI platform. Even with all the data expertise in our organization, it was strikingly obvious that the engineering function in most companies my peers and I worked for, have not been able to fully leverage all the data in a unified manner. The problem - data is often scattered across disparate systems. A better data-driven approach is a must if we want to move from gut-feeling and guesswork to intelligent actions that impact real business outcomes.
All other functions have great data fabrics:
On the other hand, engineering usually does not have anything similar. That is because compared to other functions, software engineering is an artful craft, one that is rapidly evolving. As such, choices of tools are made locally, in a bottoms-up fashion, which leads to massive fragmentation of data. How many CI/CD systems does your engineering organization use? How many CRMs does your Sales organization use?
In many cases, engineering leaders are often forced to cobble data together in spreadsheets in order to perform meaningful analysis. Take Lead Time for Change as an example, one of the 4 DORA metrics that research suggests is meaningful to track for engineering organizations: not only do you need to ETL data from multiple systems (commits, pull requests, build, artifacts, deployments) to compute it, the collected data needs to link properly together. You need a robust data system to gracefully deal with missing data and out-of-order data ingestion. Most likely, you will also need to capture changesets for your deployments. A very tall order. As the old saying goes, the shoemaker's child always goes barefoot.
Even though metrics vendors may alleviate that pain somewhat, it is not sufficient. The metrics those tools capture and surface are fairly static, and their domain of applicability is limited. Notice that the products mentioned above have analytics as a foundational capability: you can measure and track anything you want on your data.What you don’t know can hurt your teams - and your bottom line.
I want to make the case that engineering organizations similarly need a new data fabric centered around EngOps; a fabric that should of course cover the main software engineering value stream elements (Tasks, Pull Requests, Incidents, Builds, Deployments, and more), but can also extend and simplify compliance, recruiting, employee satisfaction, and OKRs.
Data fabrics usually have, at a minimum, the following characteristics:
Now, here are a few concrete examples of what an engineering leader could do simply (minutes or hours, not days) with such an EngOps data fabric:
Clearly, you shouldn’t be focusing on building such an EngOps data fabric. It is challenging to build and not your core business. The good news is that you can unlock the power of all that EngOps data for your organization with Faros AI - the connected engineering operations platform. If you’re looking to track high-impact DORA metrics and connect disparate data sources for deeper insights, contact us today.
Global enterprises trust Faros AI to accelerate their engineering operations. Give us 30 minutes of your time and see it for yourself.